
Distributing Application and OS Functionality to Improve
Application Performance

Arthur B. Maccabe, William Lawry, Christopher Wilson
�

, Rolf Riesen†

April 2002

Abstract

In this paper we demonstrate that the placement of func-
tionality can have a significant impact on the performance
of applications. OS bypass distributes OS policies to the
network interface and protocol processing to the applica-
tion to enhance application performance. We take this no-
tion one step further and consider the distribution of ap-
plication functionality to the network interface and/or the
operating system. We illustrate the advantages of this ap-
proach by considering double buffering at the application
level, a standard technique used to hide communication
latency.

1 Introduction

Over the past several years, a number of protocols and/or
application programming interfaces (APIs) have been
proposed for high performance interconnects. In this pa-
per we examine these proposals in the light of applica-
tion performance. In particular, we consider the perfor-
mance of applications that use the Message Passing Inter-
face (MPI) [7] and how this performance can be improved
by careful placement of functionality that is traditionally
considered to be part of the operating system or applica-
tion.

�

A. B. Maccabe, W. Lawry, and C. Wilson are with the Com-
puter Science Department, University of New Mexico, Albuquerque,
NM 87131-1386. This work was supported in part by Sandia National
Laboratories under contract number AP-1739.

†R. Riesen is with the Scalable Computing Systems Department,
Sandia National Laboratories, Org. 9223, MS 1110, Albuquerque, NM
87185-1110

We start by considering a traditional, layered imple-
mentation of MPI and discuss the inefficiencies inherent
in this implementation strategy. We then consider the
advantages offered by OS bypass implementations like
MPICH/GM. In reality, OS bypass involves migrating
parts of the OS functionality to a programmable network
interface card (NIC) and the application. Using double
buffering as a simple example, we then demonstrate that
applications can gain even better performance by also mi-
grating part of the application functionality to the network
interface.

The goal of this paper is to provide a concrete illustra-
tion of the benefits associated with migrating functionality
between the OS, the application, and the NIC.

2 A Typical, Layered Implementa-
tion of MPI

Figure 1 illustrates a typical implementation of the MPI
communication stack. The application makes calls to the
MPI library which makes calls to the socket library. The
socket library, in turn, makes calls to the operating system
using the trap mechanism. The operating system uses an
internal protocol stack (TCP/IP) to handle the communi-
cation. Eventually, this involves a network device driver
which uses a NIC to interface with the physical network.

There are at least three significant performance issues
associated with this approach: first, it presents a poten-
tial for a large number of memory copies; second, it adds
latency to message transmissions; and third, it adds sig-
nificant overhead to message passing. We discuss each of
these issues in turn.

1

Interface
Network

Network Driver

TCP/IP Stack

OS

Application

MPI Library

Socket Library

mapped
memory

trap

Figure 1: A Typical MPI Stack

2.1 Memory Copies

Memory copies have long been recognized as a signif-
icant problem in the implementation of communication
protocols [11]. Memory copies lead to diminished com-
munication bandwidth, increased communication latency
and increased overhead associated with communication.
Because of these costs, the communication stacks in most
operating systems have been optimized to eliminate mem-
ory copies wherever possible.

Many memory copies result from the fact that message
packets arrive with headers and data in a single contigu-
ous region of memory. Early implementations of layered
communication protocols used memory copies to separate
the header and pass the data to the next higher level of the
protocol. Current operating systems use buffer structures
to avoid these memory copies. As an example, the Linux
kernel uses the skbuf structure to avoid copies between
protocol layers. Incoming packets are kept in the same
kernel buffer while this data is being processed by ker-
nel level protocols. When a lower level protocol passes a
packet to a higher level protocol, it simply passes a pointer
to the data portion of the current packet. This passing of
pointers to avoid copies continues until the packets are re-
assembled into the application level buffer. This reassem-
bly necessarily involves a copy into the buffer which was
previously allocated by the application.

The construction of outgoing packets, in which each
protocol layer needs to add a header to the data supplied

by higher level protocols, can also result in additional
memory copies. The Linux skbuf structures are also used
to avoid these copies. Each protocol layer simply builds
its header and prepends a pointer to this header to the list
of buffers that is passed to the next lower layer. In most
cases, a copy is only incurred as the final packet is pre-
pared for transmission. If the network interface supports
“gather” operations, even this copy can be avoided.

We should note that memory copies are most problem-
atic when network transmission rates approach or even
exceed memory copy rates. This situation first arose with
the introduction of gigabit networking infrastructures. As
memory copy rates have improved and are once again
much higher than network transmission rates, it could be
argued that elimination of memory copies is not as critical
as it once was. While there is some truth to this argument,
it is important to realize that memory copies contribute to
communication latency and overhead.

2.2 Communication Latency

Latency is defined as the time needed to transmit a zero
length message from application-space on one node to
application-space on another node. At first glance, one
might be concerned by the number of software layers in-
volved in the processing of messages. However, these
layers can be designed to reduce latency and, more im-
portantly, will benefit from increases in processor clock
rates. There are two more important sources of latency
implicit in the strategy illustrated in Figure 1: traps and
interrupts.

Because all message packets are passed through the op-
erating system, communication latency will include the
overhead of a trap into the operating system on the send-
ing node to initiate the transmission and an interrupt on
the receiving node to complete the transmission. The
times for both of these operations (the trap and the inter-
rupt) are fairly significant. Typical trap times for modern
operating systems on RISC processors are one to two mi-
croseconds. Interrupt times, because interrupts need to
traverse the I/O bus, tend to be significantly larger. Typi-
cal interrupt latencies for modern computing systems tend
to be between five and ten microseconds. More important
than the specific numbers, these delays will not improve
at the same rate that processor speeds or network trans-
mission rates will improve.

2

2.3 Communication Overhead

Communication overhead is the processing used to han-
dle communication. This is processing capacity that is not
available to the application. It has been noted that appli-
cations are more sensitive to increases in communication
overhead than other parameters like transmission rate or
latency [6].

Because the host processor is involved in every packet
transmission, the strategy shown in Figure 1 implies a sig-
nificant amount of overhead. In particular, the host pro-
cessor will receive a large number of interrupts to han-
dle incoming packets. Through indirect measurement, we
have observed that interrupt overhead for an empty inter-
rupt handler is between five and ten microseconds on cur-
rent generation computing systems. Here, we should note
that interrupt latency and interrupt overhead are indepen-
dent measures even though their current values may be
roughly the same. Interrupt overhead measures the pro-
cessing time taken from the application to handle an inter-
rupt. Interrupt latency measures how quickly the comput-
ing system can respond to an interrupt. By throwing away
all work in progress on a pipelined processor, a CPU de-
signer could reduce the latency of an interrupt; however,
the interrupt overhead would not be affected as the work
that was discarded will need to be reproduced when the
application is re-started after the interrupt has been pro-
cessed.

If not carefully controlled, communication overhead
can quickly dominate all other concerns. As an example
we consider minimum inter-arrival times for 1500 byte
Ethernet frames. Table 1 summarizes frame inter-arrival
times for several network transmission rates. As an exam-
ple, the inter-arrival time for 100Mb Ethernet was calcu-
lated as:

1500B � 8b
B

� 1
100Mb/s

� 120µs

Assuming that interrupt overheads are 10 microsec-
onds, including packet processing, we see that the com-
munication overhead will be approximately 83% (10 out
of every 12 microseconds is dedicated to processing pack-
ets) for gigabit Ethernet!

Two approaches are commonly used to reduce the com-
munication overhead for gigabit Ethernet: jumbo frames
and interrupt coalescing. Jumbo frames increase the

Table 1: Minimum Inter-arrival Time for 1500 Byte Eth-
ernet Frames

Network Rate Inter-arrival Time
10 Mb/s 1200 µsec
100 Mb/s 120 µsec
1 Gb/s 12 µsec
10 Gb/s 1.2 µsec

frame size from 1500 bytes to 9000 bytes. In the case of
gigabit Ethernet, this increases the minimum frame inter-
arrival time from 12 microseconds to 72 microseconds
which will reduce the communication overhead substan-
tially. Unfortunately, this only works for larger messages
and will not be particularly helpful for 10 gigabit Ether-
net.

Interrupt coalescing holds interrupts (at the NIC) un-
til a specified number of packets have arrived or a spec-
ified period of time has elapsed, which ever comes first.
This reduces communication overhead by throttling inter-
rupts associated with communication. When a constant
stream of frames is arriving at a node, interrupt coalescing
amortizes the overhead associated with an interrupt over a
collection of frames. This approach will work well, with
higher speed networks, but introduces a high degree of
variability in the latency for small messages.

3 OS Bypass, Really OS Offload

To avoid the problems associated with memory copies,
communication latency, and communication overhead,
several groups have proposed protocols that support “OS
bypass” [3, 12, 4, 8]. Figure 2 illustrates the basic strategy
of OS-bypass. In concept, each process gets its own vir-
tual network interface which it can use directly (bypass-
ing the need to go through the operating system). In this
strategy, memory copies are avoided by using buffers in
the application rather than buffers in the operating system
(as such, the application is in control of when copies need
to be made). Communication latency is reduced by avoid-
ing the need to trap into OS for sends and interrupt the OS
for receives. Communication overhead is also reduced by
the elimination of interrupts and because any processing

3

Interface
Network

data
path

Application

MPI Library

Bypass Library

OS

Address Map

Address
validation

Figure 2: OS Bypass

of packets from the network is handled by the application
and, as such, should be directly related to the needs of the
application.

Figure 3 illustrates the bandwidth improvement1 due
to OS bypass. This figure shows two bandwidth curves
measured using a standard MPI ping-pong test. Both tests
used the standard GM2 (Glenn’s Message) control pro-
gram supplied by Myricom. Because this control pro-
gram supports IP (Internet Protocol) traffic as well as
GM traffic, we were able to run two different versions
of MPI using the same underlying environment. The
first, MPICH/IP, uses a traditional MPI implementation
in which all communication is routed through the operat-
ing system. The second, MPICH/GM, uses OS bypass.
The peak bandwidth improvement, from approximately
20 MB/s to approximately 80 MB/s, is significant.

As shown in Figure 2, OS bypass does not really by-
pass the OS. In particular, the NIC will need to rely on
the OS for the translation between the logical addresses
used by the application and the physical addresses used
by the NIC. In addition, the NIC will most likely need to
enforce other protection policies for the OS, e.g., limiting
the nodes that the application can send messages to. For

1All experimental results presented in this paper were obtained using
two 500 MHz Pentium III processors running a Linux 2.2.14 kernel.
These machines were connected through a single Myrinet switch and
had LANai 7.2 NICs.

2All GM results are based on GM version 1.4. All MPICH/GM re-
sults use version 1.2..4

 0

 20

 40

 60

 80

 100

 10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310

B
an

dw
id

th
 (

M
B

/s
)

Buffer size (KB)

Bandwidth MPICH/GM
Bandwidth MPICH/IP

Figure 3: Bandwidth Improvement from OS Bypass

Operating
System

Application

Network
Interface

Network

Processing
Protocol

Data

Control
Access

Figure 4: OS Offload

these reasons, we prefer to think of OS bypass as “OS Of-
fload.” That is, we are offloading part of the OS to the
NIC. In particular, the part of the OS that is associated
with communication policies. More than merely offload-
ing access control related to communication to the NIC,
OS bypass also offloads protocol processing to the appli-
cation. In particular, application level libraries will be re-
sponsible for fragmenting and de-fragmenting messages
to meet the requirements of the physical network. Fig-
ure 4 presents a graphical interpretation of this perspec-
tive.

4

4 Application Offload

An important advantage of our perspective is that it al-
lows us to consider other forms of offload. In particular,
application offload3, in which part of the application’s ac-
tivity is offloaded to the OS or the NIC. This observation
led to the development of Portals 3.0, an API developed
to support application offload [1].

The earliest version of Portals was implemented
in SUNMOS [5] (Sandia/UNM Operating System), a
lightweight, message passing kernel developed jointly by
researchers at Sandia National Laboratories and the Uni-
versity of New Mexico. A later version of Portals was
implemented in Puma [10], a follow-on to the SUNMOS
kernel. Each of these early implementations relied on
easy access to application memory while handling net-
work events. In particular, these versions of Portals as-
sume that the network interface is managed by a proces-
sor with direct access to application memory. While this
was true for the Intel Paragon and Intel Teraflop [9] ma-
chines, it is not true in the commodity or near commodity
networking technologies such as Myrinet, Gigabit Ether-
net, and Quadrics that were considered for the Cplant [2]
system. In these technologies, the network interface is
managed by a processor on the PCI bus which has limited
access to application memory.

An important goal in developing the Portals 3.0 API
was support for efficient implementations of the upper
level protocols that would be built using this API. Because
MPI has become ubiquitous in high-performance comput-
ing, this meant supporting the protocols commonly used
in MPI implementations along with the collection of pro-
tocols used to manage applications in a large scale com-
puting system (e.g., application launch).

The “long message protocol” is perhaps the most criti-
cal protocol used in many implementations of MPI. In this
protocol, the sending node generates a “request to send”
(RTS) message which includes all of the MPI matching
criteria and sends this message to the receiving node. The
receiving node examines the contents of the RTS mes-
sage and, when a matching receive has been posted, sends
a “clear to send” (CTS) message. Once the CTS has
been delivered, the sending node can transmit data pack-

3Because of it’s relation to OS bypass, application offload has, on
occasion, been referred to as application bypass.

ets as needed to complete the message transfer. Figure 5
presents a timing diagram for the long message protocol.

In examining Figure 5, notice that the data transfer por-
tion of the protocol is handled by OS bypass. However,
the initial stages, require a great deal of intervention from
the upper level protocol which is implemented in the ap-
plication (in the MPI library). First, the incoming RTS
needs to be matched with a posted MPI receive to generate
the CTS message. Second, the CTS needs to be matched
with an earlier RTS to initiate the transfer of data. OS
bypass does not provide a mechanism for implementing
either of these matches.

Just as we would like to bypass the operating system
and have the NIC control the flow of data between the
network and the application, we would also like to have
the NIC handle the matching used in the long message
protocol. When the processor that controls the network
interface has direct access to application memory, match-
ing the RTS message to MPI receives posted by the ap-
plication is relatively straightforward, the network pro-
cessor can simply examine the data structures used to
record posted receives. To match incoming CTS messages
with previously sent RTS messages, the network proces-
sor needs to either cache information about RTS messages
or access the memory where the application keeps this in-
formation.

This matching is far more complicated when the pro-
cessor controlling access to the network interface is on
the PCI bus. To avoid the need for direct access to the
application’s memory, the Portals API makes it possible
to push the information needed to complete this matching
onto the NIC. As such, the information needed to com-
plete the matching is readily available when an RTS or
CTS message arrives. This aspect of application offload
is illustrated in Figure 6.

5 Double Buffering

To present a concrete example of the benefits associated
with application offload, we consider double buffering in
an MPI application. In this case, the application consists
of two processes, a producer and a consumer. The pro-
ducer supplies a stream of double precision floating point
values and the consumer calculates a running sum of the
values it receives. If the producer were to send each num-

5

MPI Match

CTS

. . .

RTS

Match RTS

Data

Data

Data

Requires

Application

Intervention

Requires

Intervention

Application

Handled

by OS Bypass

Figure 5: The Long Message Protocol of MPI

OS

Address Map

Application

MPI Library

OS

Mem Desc Communication

Interface
Network

App

Figure 6: Illustrating OS and Aplication Offload

ber in a separate message, running time would be domi-
nated by communication overhead. Instead, we have the
producer prepare a batch of numbers which are then sent
to the consumer. Moreover, the consumer will provide
two buffers so that the producer can fill one buffer while
the consumer is processing the other buffer. Pseudo-code
for the producer and consumer processes is presented in
Figure 7.

In examining the code presented in Figure 7, notice that
the producer uses non-blocking sends to transmit filled
buffers. This should allow the producer to overlap its
filling of one buffer with the sending of the previously
filled buffer. Similarly, the consumer uses pre-posted,
non-blocking receives. When the producer is faster than
the consumer, this should allow the consumer to overlap
the processing of one buffer with the reception of the next
buffer.

Figure 8 compares the performance of our double
buffering application when it is run on MPI over Por-
tals versus MPI over GM. While Portals supports appli-
cation offloading, GM supports OS bypass. Each graph
shows the rate at which the double buffering application
is able to process data based on the size of the buffers.
For both environments, the throughput peaks with buffers
of about 10 kilobytes. Once this peak is attained, the

6

Producer:
double A[BSIZE], B[BSIZE];

fill A;
wait CTS A; isend A;

fill B;
wait CTS B; isend B;

for(i = 0 ; i ¡ n-1 ; i++)
�

wait A sent; fill A;
wait CTS A; isend A;

wait B sent; fill B;
wait CTS B; isend B;�

Consumer:
double A[BSIZE], B[BSIZE];

ireceive A; isend CTS A;

ireceive B; isend CTS B;

for(i = 0 ; i ¡ n ; i++)
�

wait A received; sum A;
ireceive A; isend CTS A;

wait B received; sum B;
ireceive B; isend CTS B;�

Figure 7: Pseudocode for Double Buffering

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310

T
hr

ou
gh

pu
t (

M
B

/s
)

Buffer size (KB)

Bandwidth using GM
Bandwidth using Portals

Figure 8: Double Buffering Performance (Producer
Bounded)

throughput over Portals is approximately 15% better than
the throughput attained over GM.

The intention of double buffering is to allow the pro-
ducer and consumer to run in parallel. Because we are us-
ing non-blocking sends and pre-posted receives, the trans-
mission of the data from the producer to the consumer

should also occur in parallel. Ultimately, the overall rate
will be limited by the slowest among the producer, the net-
work, and the consumer. Figure 9 presents a Gantt chart
to illustrate the three possible bottlenecks that might be
encountered in double buffering.

In our experiment, we measured the producer rate at ap-
proximately 43 MB/sec and the consumer rate at approxi-
mately 123 MB/sec. Both measurements were taken inde-
pendently of any communication. (The producer is signif-
icantly slower because it calls the random number genera-
tor for each double precision value used to fill the buffer.)
The network rate for MPICH/GM is over 80 megabytes
per second and that for portals is over 50 megabytes per
second. As such, the producer represents the bottleneck.

In examining Figure 8, note that the peak processing
rate for double buffering over Portals is approximately
38 MB/sec. The peak processing rate for double buffering
over GM is approximately 32 MB/sec. While the Portals
processing rate is close to the producer rate, the GM pro-
cessing rate is significantly lower than the producer rate.

Before we consider the poor performance of double
buffering over GM, we should note that the double buffer-
ing over Portals is actually a bit better than it appears.
When we measured the producer and consumer rates, we
measured them in absence of communication. Because

7

producer:

network:

Case 1: Producer bottleneck

Case 3: Network bottleneck

Case 2: Consumer bottleneck

consumer

producer

network:

consumer

network:

consumer

producer

fill A fill B

send A send B

empty A empty B

fill B fill B

send B

empty B

fill A fill A

send A send A

empty A empty A

fill A

fill A fill A fill A

fill A fill Afill B fill B fill B

fill Bfill Bfill B

send A send A send A

send A send A send A

send B send B send B

send Bsend B

empty A empty A empty A

empty A empty A empty A

empty B empty B

empty Bempty B

Figure 9: Overlap in Double Buffering

the current implementation of Portals does not support OS
bypass, i.e., all communication goes through the host OS,
the actual producer and consumer rates are lower than the
numbers reported earlier. We will consider this more in
more detail later in this paper.

5.1 Why Double Buffering over GM Per-
forms Poorly

Figure 10 presents a Gantt chart to explain the relatively
poor performance of double buffering over GM. When
the producer finishes filling the first buffer, it initiates the
transfer of this buffer to the consumer. This causes the
MPI library to send an RTS message to the MPI library
at the consumer. Because the consumer is waiting (in the
MPI library) for its first buffer to be filled, the CTS is
immediately returned to the producer. Unfortunately, by
the time the CTS arrives at the producer, the producer has
left the MPI library and is filling the next buffer. Thus,
the first buffer is not sent until the second buffer is filled
and the producer calls the MPI library to transmit the sec-
ond buffer. Because the producer cannot re-fill the first
buffer until it has been sent, the producer is blocked until
the first buffer is sent. Immediately after sending the first
buffer, the MPI library at the producer sends an RTS for

the second buffer. Again, the CTS for this buffer does not
arrive until the producer has begun filling the next buffer.
While this pattern allows overlap in the execution of the
producer and consumer, it does not result in overlap of the
communication with either of these processes.

In particular, the implementation strategy of
MPICH/GM requires that the application make a
call to an MPI library routine to match the incoming CTS
with the previously sent RTS. That is, the application
intervention required on the left side of Figure 5 cannot
be handled by the NIC and can only be attained by having
the application make a call to the MPI library. In contrast,
the MPI implementation over Portals takes advantage of
application offloading to match the incoming CTS and
initiate the data transfer while the producer is filling the
next buffer.

5.2 Further Experimentation

In our initial experiment, the producer rate was much
lower than the consumer rate (43 MB/sec versus 123
MB/sec). Noting that the overall production rate is
bounded by the minimum of the producer rate and the
consumer rate, we ran an experiment in which the pro-
ducer rate was higher than the consumer rate. In order

8

producer:

network:

consumer

producer:

network:

consumer

 GM behavior

Producer bottleneck

fill A fill B fill A fill B

send A send B send A

empty A empty Aempty B

wait A sent wait B sent

CTS B CTS ACTS A

RTS A

fill A fill B fill A fill B

empty A empty B

send A send B
RTS ARTS B

Figure 10: GM Behavior

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310

T
hr

ou
gh

pu
t (

M
B

/s
)

Buffer size (KB)

Bandwidth using GM
Bandwidth using Portals

Figure 11: Double Buffering Performance (Consumer
Bounded)

to control the producer and consumer rates, we replaced
the code to fill buffers (in the producer) and empty buffers
(in the consumer) with a variable length delay loop. Fig-
ure 11 presents the results of an experiment in which the
producer rate is approximately 160 MB/sec and the con-
sumer rate is approximately 40 MB/sec.

In this case, we note that the overall processing rate for
double buffering over GM is significantly better than the
processing rate for double buffering over Portals. This is
due to the fact that the current implementation of Portals
does not use OS bypass. That is, all packets and data are

 0

 5

 10

 15

 20

 25

 30

 35

 10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310

P
ro

ce
ss

in
g

ra
te

 (
M

B
/s

)

Buffer size (KB)

Overall rate
Measured consumer rate

Figure 12: Measured Consumer Rates for Portals

transmitted through the OS and the OS makes copies of
each data packet. This has a significant impact on the
actual processing rates. To examine this aspect of GM
and Portals, we instrumented the test code to measure the
actual consumer rates. Figures 12 and 13 compare the
overall processing rate with the measured consumer rates
for double buffering over Portals and GM, respectively.

In comparing these graphs, notice that the overall pro-
cessing rate for double buffering over Portals is very close
to the measured consumer rates. That is, the implementa-
tion over Portals is very close to optimal. In contrast, the
relationship between the overall processing and consumer

9

 0

 10

 20

 30

 40

 50

 60

 10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310

P
ro

ce
ss

in
g

ra
te

 (
M

B
/s

)

Buffer size (KB)

Overall rate
Measured consumer rate

Figure 13: Measured Consumer Rates for GM

rates for double buffering over GM does not exhibit this
same behavior.

6 Discussion

It is our contention that the results presented in this pa-
per represent strong evidence supporting the importance
of application offloading. That is, moving part of the func-
tionality that is associated with an application into the op-
erating system and/or special purpose processor (in this
case a communication processor). There are three issues
that should be addressed when considering these results.
First, we will consider the significance of application of-
floading. Second, we will consider the significance of our
experimental application, double buffering. Finally, we
will consider other approaches to providing application
offloading.

In a sense, the application offloading described in this
paper essentially provides good support for an upper level
RTS/CTS flow control protocol. More specifically, the
RTS/CTS protocol used to transmit long messages in
MPI. Given the specific nature of our presentation, it
makes sense to ask how significant is application offload-
ing. Our answer to this question comes in two parts. First,
MPI is a widely used message passing API and the long
message protocol is one of two basic protocols used in
the implementation of MPI. Second, RTS/CTS flow con-
trol protocols are used in a variety of upper level protocols

(e.g., file servers) and the application offloading supported
by Portals can be used in the implementation of these pro-
tocols as well.

All of our experimental results are based on the perfor-
mance of double buffering. This is because double buffer-
ing is a well known technique that permits the maximal
amount of parallelism at the algorithmic level. It is up
to the underlying system to take advantage of the paral-
lelism expressed by the application. In this respect, dou-
ble buffering is a fair test of the underlying runtime sys-
tem. We have shown that an implementation of MPI over
Portals is able to exploit all of the parallelism expressed
by the application while MPICH/GM is only able to ex-
ploit a fraction of this parallelism. Another question is
whether any applications actually takes advantage of the
parallelism it could express. That is, do applications use
double buffering? While this is a less significant ques-
tion, it is somewhat valid. Double buffering is frequently
used to hide the latency of network communication. In
the past ten or more years we have seen that network la-
tency is not scaling with improvements in network band-
width or processor cycle times. This trend will increase
the importance of latency hiding in applications. As such,
whether or not it is explicit in applications, latency hid-
ing will be used in many of the runtime environments (or
frameworks) used by applications.

In this paper, we have emphasized the fact that the Por-
tals interface was designed to support application offload-
ing and it is reasonable to ask whether application offload-
ing can be supported at other levels. The answer is cer-
tainly yes; however, other approaches carry a cost. The
essential problem that application offload addresses is the
fact that the application may be busy performing a cal-
culation when it needs to participate in a communication
protocol. In operating systems, the traditional way to deal
with this kind of problem is to use interrupts. This strat-
egy maps to “upcalls” or signals at the application level,
i.e., part of the application is offloaded to a signal handler.
Alternatively, we could consider adding a special purpose
processor (as is done with intelligent NICs) to poll for ac-
tivity. At the application level, this strategy would map to
a thread for handling communication protocols, i.e., part
of the application is offloaded to a special thread. While
either of these approaches would be relatively easy to im-
plement, we note that the MPI implementation on GM
does not provide either. An important problem with each

10

of these approaches is the overhead incurred.

7 Future Work

Noting that the current implementation of the Portals API
does not use OS bypass, there are several efforts under-
way to bypass the OS in future implementations of the
Portals API. One group at Sandia National Laboratories is
in the process of implementing the entire Portals API on
Myrinet NICs. Another group at Sandia is examining the
incremental migration functionality to Myrinet NICs and
Quadrics NICs. A group at UNM is investigating the in-
cremental migration of of functionality onto Gigabit Eth-
ernet NICs.

8 Acknowledgements

Ron Brightwell from Sandia National Laboratories was
instrumental in the development of the Portals 3.0 API
and the key concepts associated with application offload.
Tramm Hudson developed the reference implementation
of the Portals API which enables easy migration of func-
tionality between the application, OS, and NIC.

We would also like to thank the other members of the
Scalable Systems Laboratory at UNM: Sean Brennan, Pa-
tricia Gilfeather, Dennis Lucero, Carl Sylvia, and Wenbin
Zhu. Patricia and Wenbin in particular have been working
on offloading related to TCP/IP and Portals, respectively.
Their experiences have been critical in guiding the work
reported in this paper.

References

[1] Ron Brightwell, Tramm Hudson, Rolf Riesen, and
Arthur B. Maccabe. The portals 3.0 message passing
interface. Technical Report SAND99-2959, Sandia
National Laboratories, December 1999.

[2] Ron B. Brightwell, , Lee Ann Fisk, David S. Green-
berg, Tramm B. Hudson, Michael J. Levenhagen, ,
Arthur B. Maccabe, and Rolf Riesen. Massively par-
allel computing using commodity components. Par-
allel Computing, 26:243–266, February 2000.

[3] Compaq, Microsoft, and Intel. Virtual interface ar-
chitecture specification version 1.0. Technical re-
port, Compaq, Microsoft, and Intel, December 1997.

[4] Mario Lauria, Scott Pakin, and Andrew Chien. Ef-
ficient layering for high speed communication: Fast
messages 2.x. In Proceedings of the IEEE Interna-
tional Symposium on High Performance Distributed
Computing, 1998.

[5] Arthur B. Maccabe, Kevin S. McCurley, Rolf
Riesen, and Stephen R. Wheat. SUNMOS for the In-
tel Paragon: A brief user’s guide. In Proceedings of
the Intel Supercomputer Users’ Group. 1994 Annual
North America Users’ Conference., pages 245–251,
June 1994.

[6] Richard P. Martin, Amin M. Vahdat, David E.
Culler, and Thomas E. Anderson. Effects of com-
munication latency, overhead, and bandwidth in a
cluster architecture. In Proceedings of the 24th An-
nual International Symposium on Computer Archi-
tecture (ISCA-97), volume 25,2 of Computer Archi-
tecture News, pages 85–97, New YOrk, June 2–4
1997. ACM Press.

[7] Message Passing Interface Forum. MPI: A message-
passing interface standard. The International Jour-
nal of Supercomputer Applications and High Perfor-
mance Computing, 8, 1994.

[8] Myricom, Inc. The GM message passing system.
Technical report, Myricom, Inc., 1997.

[9] Sandia National Laboratories. ASCI Red, 1996.
http://www.sandia.gov/ASCI/TFLOP.

[10] Lance Shuler, Chu Jong, Rolf Riesen, David van
Dresser, Arthur B. Maccabe, Lee Ann Fisk, and
T. Mack Stallcup. The Puma operating system for
massively parallel computers. In Proceeding of
the 1995 Intel Supercomputer User’s Group Confer-
ence. Intel Supercomputer User’s Group, 1995.

[11] Peter A. Steenkiste. A systematic approach to host
interface design for high-speed networks. IEEE
Computer, 27(3):47–57, 1994.

11

[12] Task Group of Technical Committee T11. Informa-
tion technology - scheduled transfer protocol - work-
ing draft 2.0. Technical report, Accredited Standards
Committee NCITS, July 1998.

12

